El objeto de la física es el universo
Un artículo reciente de João Araújo en el Observador puede defender ideas muy ciertas en lo que se refiere a la enseñanza de las Matemáticas. Sin embargo, también revela otros problemas que el que trabaja en la frontera entre la física y la matemática se siente cotidianamente: cómo es difícil la relación entre estas ciencias que parecen tan cercanas. En efecto, y con el debido respeto, la afirmación por parte del autor de que "el objeto de la Física es la materia y la energía" es profundamente reductora y deformadora. Si me preocupa de esta afirmación es porque es sintomática de cómo una gran parte de los matemáticos encara la Física, y sobre todo con las consecuencias que esto tiene no sólo en la enseñanza de ambas como también en la actividad científica.
Es incluso muy discutible que la Física sea una "ciencia de objeto", como el autor la clasifica. Cualquier fenómeno natural debe obedecer a las leyes de la Física, por lo que en sentido amplio el objeto de la Física es el estudio de todo y cualquier fenómeno de la naturaleza; es el estudio del universo, en todas sus escalas. Si Hilbert afirma que las afirmaciones de los matemáticos "tendrán que aplicarse tanto a puntos, líneas y planos como mesas, sillas y tazas de cerveza", las leyes de la Física tendrán que ser válidas en las mayores y en las más pequeñas escalas, de las galaxias a las galaxias partículas elementales.
Fue por liberarse del contexto y buscar una regla general que, en el siglo XVII, Newton enunció que la gravitación era válida tanto para los cuerpos en el planeta Tierra como en la Mecánica celeste, alterando profundamente la forma en que hasta entonces se encaraba el Universo, iniciando una la tendencia de unificación y generalización que tendría continuidad en el siglo XIX con Maxwell (en la electricidad, en el magnetismo y en la óptica) y, en el siglo XX, en el modelo estándar de las interacciones fundamentales, unificando el electromagnetismo y las interacciones nucleares débil y fuerte. Este espíritu unificador permanece en la búsqueda de una teoría más general que incluya también la gravitación, como es el caso de las supercuerdas, pero no está presente solamente en las interacciones elementales. El funcional generador de la Teoría Cuántica de Campo, usado en la física de las partículas elementales, corresponde a la función de partición en Física Estadística, utilizada en la física de los sistemas complejos. No se trata sólo de que las ecuaciones sean las mismas: los métodos son también los mismos.
Cuando el físico portugués Vitor Cardoso y Oscar Dias explica la inestabilidad gravitacional de una especie de agujero negro (negro cuerda), un problema de la relatividad general, aplica los mismos métodos utilizados en mecánica de fluidos para explicar la inestabilidad de un fluido cayendo y su tendencia a descomponerse en gotas (la inestabilidad de Rayleigh-Plateau). Cuando el físico argentino Juan Maldacena propuso una correspondencia entre teorías de cuerdas formuladas en un espacio anti-de Sitter y teorías cuánticas de campo formuladas en la frontera de este espacio (la célebre correspondencia AdS / CFT), tenía en mente una formulación no perturbadora de la teoría de cuerdas . Pero su propuesta se ha aplicado con éxito para hacer cálculos y obtener resultados que hasta entonces no se sabía cómo obtener en sistemas fuertemente acoplados, en la Física de la Materia Condensada y en la Cromodinámica Cuántica.
La Física no busca la abstracción de su objeto-universo, como la Matemática, sino que busca siempre el descubrimiento de leyes generales de la naturaleza, y no sólo un objeto específico.
Toda la argumentación que el autor presenta sobre la Matemática puede ser presentada en relación a la Física, que históricamente es la única ciencia natural que contribuyó (y continúa contribuyendo) directamente al progreso de las Matemáticas. Siendo dos ciencias bien diferentes (la matemática no incluye la experimentación, la física no incluye la abstracción), han caminado lado a lado. Es por eso con pena que se verifica que para gran parte de los miembros de estas dos grandes comunidades, los miembros de la otra comunidad son extraños – cuando no muchos de los miembros de la misma comunidad. Hay un cierre de físicos y matemáticos dentro de su propio grupo de intereses, de que nadie sale a ganar.
De la parte de las matemáticas, creo que este cierre es intrínseco y resulta de su tendencia a la abstracción. En el caso de la física, el objeto de la física es la materia y la energía "(como alguien acostumbrado a trabajar con físicos y matemáticos, he oído otras peores). De la parte de la Física, el cierre en relación a la Matemática es más sorprendente, ya que, por definición, y dado su carácter, tendría obligación de ser una ciencia más abierta.
Pero no dudo nada de que haya físicos que se contentar con la definición (muy pobre) de João Araújo en su artículo – es probable que haya muchos que se revisen en ella. La razón más probable del alejamiento me parece ser la mayor vinculación de los físicos a la industria, en proyectos de Física Aplicada. El "aprendizaje en contexto" es típico de la ingeniería y de las ramas más aplicadas del saber, donde se quiere sobre todo resolver problemas. No es la más indicada para aprender ciencia, sea Matemática o Física, Biología o Química. Por lo tanto, me parece poco adecuado que el autor distinga a las matemáticas de las demás ciencias en su artículo, cuando el asunto al que éste se refiere es común a todas.
Físico matemático